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Abstract

Suppose that S is a commutative semiring with unity different than

zero. In this thesis, we study the concept of 2-absorbing ideal of S which

can be considered as a generalization of prime ideals. We introduce

some of its basic characteristics which are analogous to commutative

ring theory and prove that the radical of 2-absorbing ideal is also 2-

absorbing ideal and there are at most two prime k-ideals of S that are

minimal over a 2-absorbing ideal. Moreover, we investigate the concept

of 2-absorbing in special categories of semirings and prove some of

advanced theorems related to it.

Keywords: Semiring, prime ideal, 2-absorbing ideal, divided

semidomain.
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CHAPTER 1

Introduction

The algebraic structure of semirings that are considered as a

generalization of rings plays an important role in different branches of

mathematics especially in applied science and computer engineering.

We assume throughout this thesis that all semirings are commu-

tative with unity 1 6= 0. The first formal definition of semiring was

introduced by H.S Vandiver in 1934 [18] and his paper entitled ”Note

on a simple type of algebra in which cancelation law of addition does

not hold”. This structure is known as ”semiring”.

In 1958, Henriksen [12] defined the special kind of ideals of a

semiring which is called k-ideal or subtractive.

Prime ideals are essential appliance in semiring theory and many

mathematicians have exploited the usefulness of the structure of prime

ideals in algebraic systems over the decades. One of the generalizations

of that concept is 2-absorbing ideals. In 2007, Badawi [6] introduced

the concept of a 2-absorbing ideal of a commutative ring R with unity

1
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1 6= 0 and studied some of its basic properties. Badawi also proved that

a proper nonzero ideal is a 2-absorbing ideal if and only If I1I2I3 ⊆ I

for some ideals I1, I2 and I3 of S, then either I1I2 ⊆ I or I2I3 ⊆ I or

I1I3 ⊆ I.

In 2012, Darani [8] introduced the connotation of a 2-absorbing

ideal of a commutative semiring. A nonzero proper ideal I of a semiring

S is called a 2-absorbing ideal of S if whenever x, y, z ∈ S with xyz ∈ I,

then either xy ∈ I or xz ∈ I or yz ∈ I. In the same paper, a further

generalization and some results corresponding to ring theory were also

introduced.

In 2012, Ghaudhari [10] studied the 2-absorbing ideals in commu-

tative semirings and introduced some of its properties in the quotient

semiring and polynomial semiring.

Our research is organized as follows: in chapter (2), we recall

some definitions, concepts and theorems in semiring theory. In chapter

(3), we study and investigate the basic characteristics of the notation

of 2-absorbing ideals which are analogous to ring theory. In chapter

(4), we introduce the relation between P -primal ideals and 2-absorbing

ideals and we also study the concept of 2-absorbing ideal in a divided

semidomains and valuation semirings.

To be clear, all results I get in this thesis are generalization of

the results obtained by Badawi [6].



CHAPTER 2

Preliminaries

In this chapter, we give basic information in semiring theory

which are useful in the remainder of this thesis.

2.1 General Basics in semiring

In this section, we recall some basic concepts, definitions and

theorems in semiring theory. Notice that, we assume throughout this

thesis that S is a commutative semiring with unity 1 6= 0.

Definition 2.1 (Semigroup). [11] A semigroup (M, ∗) is an algebraic

structure consisting of a nonempty set M together with an operation

∗ such that the following properties hold:

1. The operation ∗ is binary that is a ∗ b ∈M for all a, b ∈M .

2. The operation ∗ is associative that is (a ∗ b) ∗ c = a ∗ (b ∗ c) for all

a, b and c ∈M .

3
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Definition 2.2 (Monoid). [11] A monoid (M, ∗) is a semigroup with

an identity element that means there exists an element e in M such

that for every element x ∈ M the equations x ∗ e = e ∗ x = x hold.

Therefore, the monoid is characterized by the triple (M, ∗, e).

Definition 2.3. A commutative monoid (an abelian monoid) is a

monoid whose operation is commutative.

Remark 2.1. • Any monoid is a semigroup.

• A semigroup (M, ∗) can be embedded into a monoid by adding an

identity element e not in M and defining x ∗ e = e ∗ x = x for all

x ∈M .

Example 2.1. 1. The set of positive integers P under addition is

semigroup.

2. The set of square matrices over real numbers R under multiplica-

tion (Mn(R), ·) is a monoid with identity element is the identity

matrix I.

3. The set of integers Z under multiplication is a commutative

monoid with identity element is one.

4. The set of nonnegative integers N with addition form a commu-

tative monoid with identity element is zero.

Definition 2.4 (Semiring). [11] A semiring is an algebraic structure

consists a nonempty set S with two binary operation addition (+) and

multiplication (·) such that the following are satisfied:

1. (S,+) is a commutative monoid with identity element ”0”.

2. (S, ·) is a monoid with identity element ”1”

3. Left and right distribution laws hold, i.e. for all a, b and c ∈ S we

have:
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• a(b+ c) = ab+ ac.

• (b+ c)a = ba+ ca.

4. 1 6= 0.

5. Multiplication by 0 annihilates S that is for all s ∈ S we have:

• 0s = s0 = 0

Definition 2.5. A semiring S is said to be commutative if ab = ba for

all a, b ∈ S.

Example 2.2. The set of natural numbers N under usual addition and

multiplication is a commutative semiring.

Example 2.3. Consider the triple (N,⊕,�) of natural numbers N and

⊕ is defined by x ⊕ y is the least common multiple of x and y that is

(x⊕ y = lcm(x, y) = xy
gcd(x,y)

) and � is the usual multiplication. Then

(N,⊕,�) is not semiring since the conditions (1)− (3) are satisfied but

(4) and (5) are not satisfied. To show that:

1. (N,⊕) is a commutative monoid with identity element ”1” since:

• The associative property holds from number theorey, i.e.,

(a⊕ b)⊕ c = a⊕ (b⊕ c) for all a, b and c ∈ N.

• ”1” is the additive identity element since 1 ⊕ b = b ⊕ 1 = b

for all b ∈ N.

• The commutative property holds since a ⊕ b = lcm(a, b) =
ab

gcd(a,b)
for all a, b ∈ N.

2. (N,�) is a monoid with identity element ”1” since:

• The associative property holds since a � (b � c) = a(bc) =

(ab)c = (a� b)� c for all a, b and c ∈ N.

• ”1” is the multiplicative identity since 1� b = b� 1 = b for

all b ∈ N.
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3. Left and right distribution laws hold since:

• Let a, b and c ∈ N. Then

a� (b⊕ c) =
abc

gcd(b, c)

and

(a� b)⊕ (a� c) =
abac

gcd(ab, ac)
=

abc

gcd(a, b)

So, left distribution law is satisfied.

• Similarly, as we are done above the right distribution law is

satisfied.

4. The additive identity element is the same of multiplication.

5. ”0” doesn’t annihilates N since:

• 1� a = a� 1 = a 6= 1

Example 2.4. Consider S = N[x] be the set of all polynomial with

coefficients in N where x is an indeterminate. Let the usual addition

and multiplication operations of polynomials be defined on S. Then

(S,+, ·) is a semiring and it is called The polynomial semiring over

the semiring (N,+, ·).

Example 2.5. Consider S = N + nxN[x] with usual addition and

multipliaction operations where x is an indeterminate and n ∈ N. Then

(N + nxN[x],+, ·) is a commutative semiring.

Proposition 2.1. [11] Let S be a nonempty set with two binary oper-

ations ” + ” and ” · ” and two distinct elements ”0” and ”1”. Then S

is a commutative semiring if and only if the following are satisfied for

all a, b, c, d and e ∈ S:

(1) a+ 0 = 0 + a = a.

(2) a · 1 = a.
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(3) 0 · a = 0.

(4) [(ae+ b) + c]d = db+ [a(ed) + cd].

Proof. (⇒) If S is a commutative semiring, then the conditions (1)−(4)

are trivially satisfied.

(⇐) If the conditions (1)−(4) are satisfied, then we want to show

(S,+, ·) is a commutative semiring.

(1) (S,+, ·) is a commutative monoid with identity element ”0” since:

• ” + ” is commutative since if a, b ∈ S then by condition (4) we

have:

a+ b = [(a · 1 + b) + 0] · 1

= b+ [a · 1 + 0 · 1]

= b+ a

• ” + ” is associative since if a, b and c ∈ S then by condition

(4) we:

(a+ b) + c = (b+ a) + c

= [(b · 1 + a) + c] · 1

= 1 · a+ [b · 1 + c]

= a+ (b+ c)

• ”0” is the identity for the addition since if a ∈ S then by

condition (1) we have:

0 + a = a+ 0 = a

(2) (S, ·) is commutative monoid with an identity element ”1” since:
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• ” · ” is commutative since if a, b ∈ S then by condition (4) we

have:

ab = [(0 + a) + 0] · b

= ba+ [0 · b+ 0 · b]

= ba

• ” · ” is associative since if a, b and c ∈ S then by condition (4)

we:

(ab)c = [(ab+ 0) + 0] · c

= c · 0 + [a(bc) + 0 · c]

= a(bc)

• ”1” is the identity for the multiplication since if a ∈ S then by

condition (2) and the commutative property for multiplication

we have:

a · 1 = a = 1 · a

(3) Left and right distribution hold since:

• Let a, b and c ∈ S. Then

(a+ b)c = [(a · 1 + b) + 0] · c

= cb+ [a(1 · c) + 0 · c]

= cb+ ac

= ac+ bc

Hence, the right distribution law is satisfied.

• Now the left distribution law holds since:

a(b+ c) = (b+ c)a

= ba+ ca

= ab+ ac
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(4) 1 6= 0 from assumption.

(5) ”0” annihilates S since if a ∈ S then by condition (3) and the

commutative property of multiplication we have:

a · 0 = 0 · a = 0

Therefore, (S,+, ·) is a commutative semiring.

2.2 Ideals

Ideals play a fundamental role in ring theory and semiring theory.

During this section, we recall the connotation of ideals of semirings and

we give some examples of it.

Definition 2.6 (Subsemiring). A subsemiring U of a semiring (S,+, ·)
is a subset of S such that (U,+, ·) is a semiring.

Proposition 2.2. A subset U of a semiring S is a subsemiring if the

following conditions hold:

1. 0 and 1 belong to U .

2. U is closed under addition (i.e., a+ b ∈ U for all a, b ∈ U).

3. U is closed under multiplication (i.e., ab ∈ U for all a, b ∈ U).

Example 2.6. Let S be a semiring. Then P (S) = {s+ 1, s ∈ S}∪{0}
is a subsemiring of S. Since

1. P (S) is a subset of S.

2. 0 ∈ P (S) and 1 = 1 + 0 ∈ P (S).
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3. • P (S) is closed under addition since let a, b ∈ P (S). If a =

b = 0, then a+ b = 0 ∈ P (S). If a = 0 and b 6= 0, then there

exists s1 ∈ S such that b = s1 + 1 and thus a+ b = s1 + 1 ∈
P (S). Now if a, b 6= 0, then there exist s1 and s2 such that

a = s1 + 1 and b = s2 + 1 and thus a+ b = (s1 + s2 + 1) + 1 ∈
P (S).

• Similarly, P (S) is closed under multiplication.

Definition 2.7 (Ideal). [11] An ideal I of a semiring S is a nonempty

subset of S with the following conditions are satisfied:

(1) I is closed under addition (i.e., if a, b ∈ I, then a+ b ∈ I).

(2) SI ⊆ I (i.e., sb ∈ I for all s ∈ S and b ∈ I).

Definition 2.8. A proper ideal I of a semiring S is an ideal such that

I 6= S (i.e., 1 /∈ I).

Example 2.7. Let (Z,+, ·) be the semiring of integers with usual ad-

dition and multiplication. Suppose I = N. Then N is subsemiring of

Z, but I is not an ideal since −1 · 2 = −2 /∈ N.

Definition 2.9. The principle ideal generated by one element x in a

semiring S is the multipliers of x, denoted by 〈x〉 or Sx.

Definition 2.10. Let a and b be elements of a semiring S. Then

we define the ideal 〈a, b〉 to be the ideal generated by a and b (i.e.,

〈a, b〉 = {s1a+ s2b | s1, s2 ∈ S}

Definition 2.11. Let S be a semiring and A and B be ideals of S.

Then we define the addition and multiplication of ideals as follow:

• A+B = {a+ b | a ∈ A, b ∈ B}.

• A ·B = {a1b1 + a2b2 + · · ·+ anbn | ai ∈ A, bi ∈ B, n ∈ N}.
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Proposition 2.3. [14] Let S be a semiring and A,B and C be ideals

of S. Then the follwoing statements are satisfied:

(1) The sets A+B and A ·B are ideals of S.

(2) A+ (B + C) = (A+B) + C and A · (B · C) = (A ·B) · C.

(3) A+B = B + A and A ·B = B · A.

(4) A · (B + C) = A ·B + A · C.

(5) If A+B = 〈0〉, then A = B = 〈0〉.

(6) A+ 〈0〉 = A, A · S = A and A · 〈0〉 = 〈0〉.

Definition 2.12 (k-Ideal). [11] A subtractive ideal (k-ideal) I of a

semiring S is an ideal such that if x, x+ y ∈ I, then y ∈ I.

Definition 2.13. [11] An element a of a semiring S is an additively

idempotent if a+a = a. The set of all additively idempotent is denoted

by I+(S).

Definition 2.14. [11] An element a of a semiring S is a multiplicatively

idempotent if a2 = a. The set of all multiplicatively idempotent is

denoted by I∗(S).

Definition 2.15. [11] A semiring S is called an additively idempotent

if S = I+(S).

Definition 2.16. [11] A semiring S is called a multiplicatively idem-

potent if S = I∗(S).

Definition 2.17. [11] A semiring S is called an idempotent if S =

I+(S) ∩ I∗(S).

Example 2.8. Let S = {0, 1, d} be the idempotent semiring so that

1 + d = d+ 1 = d. Then {0, d} is an ideal of S but not subtractive.
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Example 2.9. Let N be the semiring of natural numbers with usual

addition and multiplication. Then I = 3N is subtractive ideal.

Remark 2.2. • The set of all elements in a semiring S having a

multiplicative inverse is denoted by U(S).

• The set of all elements in a semiring S having an additive inverse

is denoted by V (S).

• V (S) is not empty since 0 ∈ V (S) and it is submonoid of (S,+).

• If x+ y ∈ V (S), then x and y also belong to V (S).

• S is ring if and only if V (S) = S.

2.3 Prime, Maximal and Minimal Ideals

Throughout this section, we recall the definitions of prime, max-

imal and minimal ideals which are considered as the most important

tool in this thesis.

Definition 2.18 (prime ideal). [11] An ideal P of a semiring S is prime

if whenever HK ⊆ P for some ideals H and K, then either H ⊆ P or

K ⊆ P .

Definition 2.19. The set of all prime ideals of a semiring S is called

the spectrum of S and is denoted by Spec(S).

Remark 2.3. • Ang ring is a semiring.

• The set of all prime ideals of a ring R form a semiring with usual

addition and multiplication of ideals.
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The following result is a generalization for the one in ring theory.

Proposition 2.4. [11] Let S be a semiring and I an ideal of S. Then

the following are equivalent:

(1) I is a prime ideal.

(2) {xsy | s ∈ S} ⊆ I if and only if x ∈ I or y ∈ I.

(3) If x, y ∈ S with 〈x〉 〈y〉 ⊆ I, then either x ∈ I or y ∈ I.

Corollary 2.1. [11] Let S be a semiring and x, y ∈ S. Then the

following conditions on a prime ideal I of S are equivalent:

(1) If xy ∈ I, then either x ∈ I or y ∈ I.

(2) If xy ∈ I, then yx ∈ I.

Proof. (1)⇒ (2). Assume (1) holds and let xy ∈ I. Then either x ∈ I
or y ∈ I. Since I is an ideal, then yx ∈ I.

(2) ⇒ (1). Let x, y ∈ S with xy ∈ I. Since I is an ideal, then

xys ∈ I for all s ∈ S. By (2), we conclude ysx ∈ S for all s ∈ S. By

proposition (2.4), we have either x ∈ I or y ∈ I.

Corollary 2.2. [11] Let S be a commutative semiring and I an ideal

of S. Then I is a prime ideal if and only if xy ∈ I implies that x ∈ I
or y ∈ I for all x, y ∈ S.

Proof. (⇒) Let S be a commutative semiring and I be a prime ideal.

Assume xy ∈ I and H = 〈x〉 and K = 〈y〉. We claim that 〈xy〉
= 〈x〉 〈y〉. Let a ∈ 〈xy〉 implies that there exists s ∈ S such that

a = xys = x(1)y(s) ∈ 〈x〉 〈y〉. Now, let a ∈ 〈x〉 〈y〉. Then there exist

s1, s2 ∈ S such that a = xs1ys2. Since S is commutative, then we
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have a = xys1s2 ∈ 〈xy〉. Since xy ∈ I, then HK ⊆ I and thus either

H = 〈x〉 ⊆ I or K = 〈y〉 ⊆ I. Hence, either x ∈ I or y ∈ I.

(⇐) Let H,K be ideals of S with HK ⊆ I and H * I. Suppose

a ∈ H \ I. Then for each b ∈ K if ab ∈ I, then by assumption we have

either a ∈ I or b ∈ I. Since a /∈ I, then for all b ∈ K we have b ∈ I
and hence K ⊆ I.

Example 2.10. Consider the semiring (N,+, ·). Then the ideal I = N\
{1} is prime ideal. But, the set I[t] of all polynomials with coefficients

in I where t is an indeterminate is not prime ideal since (3+t)(1+2t) =

3 + 7t+ 2t2 ∈ I[t] while neither 3 + t nor 1 + 2t belong to I[t].

Definition 2.20 (Zero divisor). [17] An element a of a semiring S

is called a zero divisor if there exists b 6= 0 in S such that ab = 0.

Moreover, the set of all zero divisors of S is denoted by Z(S).

Example 2.11. Let S = Z6 be a semiring with an addition and multi-

plication operations modulo 6. Then 3 is a zero divisor since 3 · 4 = 0.

Example 2.12. Let S = N×N be a semiring with an addition opera-

tion defined as (x1, y1)+(x2, y2) = (x1+x2, y1+y2) and a multiplication

operation is defined as (x1, y1) · (x2, y2) = (x1 · x2, y1 · y2). Then (0, a)

and (b, 0) are zero divisors where a, b ∈ N.

Definition 2.21 (Semidomain). [4] Let S be a commutative semiring

with unity 1 6= 0. Then S is said to be semidomain if ab = 0 implies

that either a = 0 or b = 0 (i.e., S has no nonzero zero divisors).

Remark 2.4. A commutative semiring S is semidomain if and only if

〈0〉 is a prime ideal.

Example 2.13. The semirings N, Z and R are semidomains.

Definition 2.22. A semiring S is said to be multiplicatively cancella-

tive if xy = xz for some elements x, y and z of S, then y = z.



2.3 Prime, Maximal and Minimal Ideals 15

Definition 2.23 (Maximal ideal). [9] Let M be a proper ideal of a

semiring. Then M is said to be a maximal ideal of S if there is no an

ideal I of S such that M ⊂ I ⊂ S.

Definition 2.24. [7] A partially ordered set (POSet) is a nonempty

set O with relation, usually denoted by ≤, such that the following

conditions hold for all a, b, c ∈ O,

1. a ≤ b and b ≤ a, then a = b (Antisymmetry property).

2. a ≤ a (Reflexive property).

3. a ≤ b and b ≤ c, then a ≤ c (Transitive property).

Definition 2.25. A totally ordered set is a partially ordered set (O,≤)

with connexity property i.e., for all x, y ∈ O either x ≤ y or y ≤ x.

Definition 2.26. A totally ordered commutative monoid (tomonoid)

(M,+, ·,≤) is a commutaive monoid (M,+, ·) such that (M,≤) is a

totally ordered set and if x ≤ y implies that x + z ≤ y + z for any

z ∈M .

Definition 2.27. [14] A multiplicatively closed set (MC-set) is a sub-

set U of a semiring S such that:

1. 1 ∈ U (i.e., U is not empty).

2. xy ∈ U for all x, y ∈ U .

In other words, U is an MC-set if and only if it is a submonoid of (S, ·).

Definition 2.28. [7] A chain C in a partially ordered set (O,≤) is a

subset of O such that for every a, b ∈ C, either a ≤ b or b ≤ a. An

element u of O is an upper bound of C if for every element a ∈ C,

a ≤ u. An element m of O is a maximal element of the partially

ordered set O, if whenever m ≤ a, a ∈ O then m = a.
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Proposition 2.5 (Zorn’s lemma). [5] If every chain C in a partially

ordered set O has an upper bound in O then O has at least one maximal

element.

Lemma 2.1. [14] Let S be a semiring. Then the maximal elements of

the set of all ideals disjoint from an MC-set of S are prime ideals.

Proof. Let S be a semiring and U ⊆ S an MC-set. Let C be the set of

all ideals disjoint from U . If {Iα} is a chain of ideals belonging to C ,

then ∪Iα is also an ideal disjoint from U and an upper bound for the

chain {Iα}. Therefore, according to Zorn’s Lemma, C has a maximal

element. Let P be a maximal element of C .

Now we prove that P is a prime ideal of S. Let a /∈ P , b /∈ P
and ab ∈ P . Then P ⊂ P + (a) and P ⊂ P + (b). This means that

P + (a) and P + (b) are ideals of S that are not disjoint from U . So

there exist u1, u2 ∈ U such that u1 = p1 +xa and u2 = p2 +yb for some

p1, p2 ∈ P and x, y ∈ S. But u1u2 = p1p2 + p1yb+ p2xa+ xyab. Since

ab ∈ P , then u1u2 ∈ P which contradicts this fact that P is disjoint

from U . Therefore ab 6∈ P and P is a prime ideal of S.

Corollary 2.3. Any semiring has at least one maximal ideal and all

maximal ideals are prime ideals.

Proof. Let S be a semiring and U = {1}. Then U is an MC-set and

the set C of all ideals disjoint from U is the set of all proper ideals

of S. According to Zorn’s lemma, C has a maximal element say P .

By lemma (2.1), we conclude P is prime ideal and hence all maximal

ideals of S are prime ideals.

Definition 2.29 (Minimal ideals). Let m be an ideal of a semiring S.

Then m is said to be a minimal ideal of S if there is no ideal I of S
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such that I ⊂ m ⊂ S. In other words, {0} is the only ideal that is

properly contained in I.

Example 2.14. In the semiring Z12, the ideals 〈6〉 and 〈4〉 are minimal

ideals.

Definition 2.30. An ideal m of a semiring S is said to be minimal

ideal over an ideal I if there is no ideal J of S such that I ⊂ J ⊂ m.

Now, we consider the concept of radical of an ideal which is used

widely during this thesis.

Definition 2.31. [14] Let I be an ideal of a semiring S. Then the

radical of I is the set of all a ∈ S such that an ∈ I for some n > 0 and

is denoted by Rad(I).

Rad(I) = {a ∈ S : an ∈ I for some n ∈ N}

Example 2.15. Consider the semiring of natural numbers N. Then

Rad(4N) = 2N and Rad(5N) = 5N. In general, Rad(nN) = rN where

r is the product of all distinct prime factors of n.

Theorem 2.1. [14] Let P be a prime ideal of a semiring S and n a

positive integer. Then Rad(P n) = P .

Proof. Let x ∈ P . Then xn ∈ P n and so P ⊂ Rad(P n). Now assume

x ∈ Rad(P n), then there exists m ∈ N such that xm ∈ P n. Since P n ⊂
P and P is a prime ideal, we have x ∈ P and so P = Rad(P n).

Theorem 2.2. Let I be an ideal of a commutative semiring S. Then

the radical of I is also an ideal.

Proof. Let a, b ∈ Rad(I). Then there exist m,n ∈ N such that an, bm ∈
I. To show a+ b ∈ Rad(I), we use binomial theorem for (a+ b)m+n−1
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as follow:

(a+ b)m+n−1 =

(
m+ n− 1

0

)
am+n−1b0 + · · ·+(

m+ n− 1

i

)
am+n−1−ibi + · · ·+

(
m+ n− 1

m+ n− 1

)
a0bm+n−1

So for each i, we have either i ≥ m or m + n − 1 − i ≥ n and thus

each term am+n−1−ibi ∈ I. Hence, a + b ∈ Rad(I). Now let s ∈ S and

x ∈ Rad(I). Then there exists m ∈ N such that am ∈ I. Since S is

commutative and I is an ideal, then (sa)m = smam ∈ I implies that

sa ∈ Rad(I). Therefore, Rad(I) is an ideal.

Definition 2.32. An element x in a semiring S is called nilpotent if

xn = 0 for some n > 0.

Definition 2.33. The set of all nilpotent elements of a semiring S is

called nilradical of S and is denoted by Nil(S).

Theorem 2.3. The nilradical of a commutative semiring S (Nil(S))

is an ideal.

Proof. Let a, b ∈ Nil(S). Then there exist m,n ∈ N such that an =

bm = 0. To show a + b ∈ Nil(S), we use binomial theorem for (a +

b)m+n−1 as follow:

(a+ b)m+n−1 =

(
m+ n− 1

0

)
am+n−1b0 + · · ·+(

m+ n− 1

i

)
am+n−1−ibi + · · ·+

(
m+ n− 1

m+ n− 1

)
a0bm+n−1

So for each i, we have either i ≥ m or m + n − 1 − i ≥ n and thus

each term am+n−1−ibi = 0. Hence, a + b ∈ Nil(S). Now let s ∈ S and

x ∈ Nil(S). Then there exists m ∈ N such that am = 0. Since S is

commutative and I is an ideal, then (sa)m = smam = 0 implies that

sa = 0. Therefore, Nil(S) is an ideal.
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Definition 2.34 (Quotient semiring). [4] Let I be an ideal of a

commutative semiring S. Then the quotient semiring of S by I is

R/I = {s + I : s ∈ S} and the binary operations ⊕ and � defined as

follows: (s1+I)⊕(s2+I) = (s1+s2)+I and (s1+I)�(s2+I) = (s1·s2)+I

Definition 2.35 (P -Primal Ideal). Let S be a semiring and I an ideal

of S. Then I is said to be P -primal ideal of S if Z(S/I) = P/I for

some a prime ideal P .

Definition 2.36 (Division semiring). Let S ba semiring. Then S is

said to be a division semiring if U(S) = S \ {0}.

Definition 2.37 (Semifield). A semiring S is said to be semifield if it

is a commutative division semiring.



CHAPTER 3

Basic Characteristics of

2-Absorbing Ideals of

Commutative Semiring

3.1 The Concept of 2-Absorbing Ideals

In this section, we give the concept of 2-absorbing ideals of a

commutative semiring S which can be considered as a generalization

of prime ideals and we introduce some examples related to it.

Definition 3.1. [8] A nonzero proper ideal I of a semiring S is called

a 2-absorbing ideal of S if whenever x, y, z ∈ S with xyz ∈ I, then

either xy ∈ I or xz ∈ I or yz ∈ I.

Example 3.1. Let S be the semiring of all non negative integers under

usual addition and multiplication (Z+
0 ,+, ·). Then the principle ideal

〈3〉 is 2-absorbing ideal of Z+
0 . To show this let a, b, c ∈ Z+

0 with

20
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abc ∈ 〈3〉 which implies that 3|abc. Since 3 a is prime number, then

we have either 3|a or 3|b or 3|c and thus either 3|ab or 3|ac or 3|bc. So,

we have either ab ∈ 〈3〉 or ac ∈ 〈3〉 or bc ∈ 〈3〉. In general, the ideals

of the form 〈p〉 are 2-absorbing ideals of (Z+
0 ,+, ·) where p is a prime

number.

Example 3.2. Let S be the semiring of nonnegative integers with

identity element ∞ where addition and multiplication operations de-

fined as a ⊕ b = max{a, b} and a � b = min{a, b}. We denote S

by (Z+
0 ∪ {∞},⊕,�). Then It = {0, 1, 2, 3, ..., t} where t ∈ Z+

0 is

2-absorbing ideal since if a � b � c ∈ It for some a, b, c ∈ S, then

a � b � c = min{a, b, c} = a or b or c. Hence, either a � b ∈ It or

a� c ∈ It or b� c ∈ It.

Remark 3.1. Every prime ideal of a commutative semiring S is a

2-absorbing ideal of S. But the converse is not true.

Proof. Let I be a prime ideal of S and let a, b, c ∈ S with abc ∈ I.

Since I is a prime ideal, then either a ∈ I or b ∈ I or c ∈ I and thus

either ab ∈ I or ac ∈ I or bc ∈ I. Hence, I a is 2-absorbing ideal of S.

To show that the converse is not true we consider the following

example.

Example 3.3. In the semiring (Z+
0 ,+, ·), let I = 〈4, 5〉. Then

I = {0, 4, 5, 8, 9, 10, 12, 13, 14, ...} = Z+
0 \{1, 2, 3, 6, 7, 11} is 2-absorbing

ideal not prime ideal. To show that assume abc ∈ I for some

a, b, c ∈ Z+
0 and suppose neither ab ∈ I nor ac ∈ I nor bc ∈ I. Then

ab, bc and ac ∈ {1, 2, 3, 6, 7, 11} and the possible choices for a, b, c

are one of them belongs to {1, 2, 3, 6, 7, 11} and the others equal 1 or

a = 2, b = 3, c = 1. So, in either all cases we get abc ∈ {1, 2, 3, 6, 7, 11}
and not belong to I, a contradiction. Hence, I is 2-absorbing ideal.
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I is not prime ideal of Z+
0 since 2 . 7 ∈ 〈4, 5〉 but neither 2 ∈ 〈4, 5〉

nor 7 ∈ 〈4, 5〉.

3.2 Properties in Semiring Theory Corresponding

to Ring Theory

In this section, we give some properties of semiring theory that

are similar to some properties in ring theory which are useful in the

proof of theorems in section (3.3).

Lemma 3.1. Let I ⊆ P be ideals of a semiring S with P a prime ideal.

Then the following conditions are equivalent:

(1) P is a minimal prime ideal of I.

(2) S−P is a multiplicatively closed set which is maximal with respect

to missing I i.e., maximal among multiplicatively closed sets that

are disjoint from I.

(3) For each x ∈ P , there is y /∈ P and a nonnegative integer n such

that yxn ∈ I.

Proof. (1)⇒(2) Expand S − P to a multiplicatively closed set U that

is maximal with respect to missing I. Let Q be an ideal containing I

that is maximal with respect to being disjoint from U . Then by Lemma

(2.1), Q is a prime ideal. Note that Q is also disjoint from S−P which

implies that Q ⊆ P . Since P is a minimal prime ideal of I, then P ⊆ Q

and thus P = Q. Since Q ∩ U = φ, then U ⊆ S − Q = S − P and so

U = S − P .
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(2) ⇒ (3) Choose a nonzero x ∈ P and let U = {yxi| y ∈
S − P, i = 0, 1, 2, ...}. Then U is a multiplicatively closed set that

properly contains S − P . Since S − P is maximal with respect to

missing I, then there is some y ∈ S − P and a nonnegative integer n

such that yxn ∈ I.

(3) ⇒ (1) Assume that I ⊂ Q ⊂ P where Q is a prime ideal.

Choose an element x ∈ P −Q, then there exists an element y /∈ P and

a positive integer n such that yxn ∈ I ⊂ Q. since y /∈ Q ⊂ P and Q is

prime ideal, then x ∈ Q, a contradiction. So, P = Q

Proposition 3.1. Let S be a semiring and I a k-ideal of S. Then the

Radical of I (Rad(I)) is the intersection of all prime k-ideals containing

I.

Proof. let Q be the intersection of all prime k-ideals of S containing I.

Show Rad(I) = Q.

(⇒) Let x ∈ Rad(I). Then there exists n ∈ N such that xn ∈ I
which implies xn ∈ P for any prime k-ideal P containing I. Since P is

prime, then x ∈ P and so Rad(I) ⊆ Q.

(⇐) By contradiction, suppose there is y ∈ Q such that y /∈
Rad(I). That means for any natural number n, yn /∈ I. So, the set

U = {1, y, y2, y3, ...} is an MC- set that is disjoint from I, then we

can expand I to an k-ideal J that is maximal with respect to the

disjointness of U . By lemma 2.1, J is prime ideal of S. Since Q is

contained in all prime k-ideals that containing I and y ∈ Q, then we

have y ∈ J , a contradiction. Hence, Q ⊆ Rad(I).
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3.3 More Characteristics of 2-Absorbing Ideals

In this section, we discover basic properties of 2-absorbing ideals

of a commutative semiring S. We study and prove some of advanced

theorems which are generalization of ones in ring theory.

Theorem 3.1. Suppose that I is a 2-absorbing ideal of a semiring S.

Then Rad(I) is also a 2-absorbing ideal of S and x2 ∈ I for every

x ∈ Rad(I).

Proof. First, we show x2 ∈ I for all x ∈ Rad(I). Let x ∈ Rad(I). Then

there exists n ∈ N with xn ∈ I. By induction, if n = 1, then x ∈ I

and thus x2 ∈ I. Assume it is true for n = k that means if xk ∈ I,

then x2 ∈ I. Now, show for n = k + 1. Suppose xk+1 ∈ I. Since I

is 2-absorbing ideal and xk+1 = xk−1xx, we conclude either xk ∈ I or

x2 ∈ I. In either cases we have x2 ∈ I.

Now, let xyz ∈ Rad(I) for some x, y and z of S. Then by the

first part of the proof above (xyz)2 ∈ I. Since S is commutative

semiring, then we have (xyz)2 = x2y2z2. Since I is 2-absorbing ideal

of S, then either x2y2 ∈ I or x2z2 ∈ I or y2z2 ∈ I. Hence, we have

either xy ∈ Rad(I) or xz ∈ Rad(I)or yz ∈ Rad(I). Therefore, Rad(I)

is 2-absorbing ideal of S.

The converse of theorem 3.1 is not true to show that we consider

the following example.

Example 3.4. In the semiring (Z+
0 ,+, .), let I = 〈3, 5〉 =

{0, 3, 5, 6, 8, 9, 10, 11, ...} = Z+
0 \ {1, 2, 4, 7}. Then Rad(I) = {a ∈

Z+
0 : an ∈ I for some n ∈ N} = Z+

0 \ {1} and it’s a 2-absorbing

ideal of Z+
0 since if abc ∈ Rad(I) for some a, b, c ∈ Z+

0 , then abc 6= 1

and thus either a or b or c doesn’t equal 1. Hence, either ab ∈ Rad(I)
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or ac ∈ Rad(I) or bc ∈ Rad(I). However, I is not 2-absorbing ideal of

Z+
0 since 2 · 2 · 2 ∈ I but 2 · 2 /∈ I.

Theorem 3.2. Suppose I is a 2-absorbing ideal of a semiring S. Then

there are at most two prime k-ideals of S that are minimal over I.

Proof. Let I be a 2-absorbing ideal of S. Suppose that J = {Pi | Pi
is a prime k-ideal of S that is minimal over I} and suppose that J

has at least three elements. Let P1, P2 ∈ J be two distinct prime k-

ideals. Then there are x1 ∈ P1 \ P2 and x2 ∈ P2 \ P1. We claim that

x1x2 ∈ I. Since P1, P2 ∈ J , then by lemma (3.1) there exist c2 /∈ P1

and c1 /∈ P2 such that c2x
n
1 ∈ I and c1x

m
2 ∈ I for some n,m ∈ N \ {0}.

Since x1, x2 /∈ P1 ∩ P2 and P1, P2 are prime ideals, then x1, x2 /∈ I and

xl1, x
l
2 /∈ P1 ∩ P2 for all l ∈ N \ {0} implies that xl1, x

l
2 /∈ I. Since

c2x
n
1 , c1x

m
2 ∈ I and xl1, x

l
2 /∈ I, then c2x1, c1x2 ∈ I because I is 2-

absorbing ideal. Since x1, x2 /∈ P1 ∩ P2 and c2x1, c1x2 ∈ I ⊆ P1 ∩ P2,

we conclude c2 ∈ P2 \ P1 and c1 ∈ P1 \ P2, and thus c1, c2 /∈ P1 ∩ P2.

Since c2x1, c1x2 ∈ I and I is an ideal, then we have (c1 + c2)x1x2 ∈ I
and so either (c1 + c2)x1 ∈ I or (c1 + c2)x2 ∈ I or x1x2 ∈ I. If

(c1 + c2)x1 ∈ I ⊆ P1∩P2, then either (c1 + c2) ∈ P2 or x1 ∈ P2 because

P2 is prime ideal of S. But x1 /∈ P2, so we conclude (c1+c2) ∈ P2. Since

P2 is k-ideal of S and c2 ∈ P2, then we have c1 ∈ P2, a contradiction.

So, (c1+c2)x1 /∈ I. If (c1+c2)x2 ∈ I ⊆ P1∩P2, then either (c1+c2) ∈ P1

or x2 ∈ P1 because P1 is prime ideal of S. But x2 /∈ P1, so we have

(c1 + c2) ∈ P1. Since P1 is k-ideal of S and c1 ∈ P1, then we have

c2 ∈ P1, a contradiction. So, (c1 + c2)x2 /∈ I. Hence x1x2 ∈ I.

Now, suppose there is a P3 ∈ J such that P3 is neither P1 nor

P2. Then there exist y1 ∈ P1 \ (P2 ∪ P3), y2 ∈ P2 \ (P1 ∪ P3) and y3 ∈
P3\(P1∪P2). Using previous claim we conclude y1y2 ∈ I ⊆ P1∩P2∩P3

implies that y1y2 ∈ P3. Since P3 is prime ideal, then either y1 ∈ P3 or

y2 ∈ P3, a contradiction. Hence, J has at most two elements.
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Theorem 3.3. Let I be a 2-absorbing k-ideal of a semiring S. Then

one of the following statments must hold:

(1) Rad(I) = P is a prime k-ideal of S such that P 2 ⊆ I.

(2) Rad(I) = P1 ∩ P2, P1P2 ⊆ I, and Rad(I)2 ⊆ I where P1, P2 are

the only distinct prime k-ideals of S that are minimal over I.

Proof. By proposition (3.1) and theorem (3.2), we conclude that either

Rad(I) = P is a prime k-ideal of S or Rad(I) = P1∩P2 where P1, P2 are

the only distinct prime k-ideals of S that are minimal over I. Suppose

Rad(I) = P is a prime k-ideal of S. Let x, y ∈ P . Using theorem (3.1),

we have x2, y2 ∈ I and thus x2y + xy2 = x(x + y)y ∈ I. Since I is

2-absorbing ideal of S, then we have either xy ∈ I or (x + y)y ∈ I or

x(x+y) ∈ I. If xy ∈ I, then we are done. If x(x+y) = x2+xy ∈ I, then

xy ∈ I because I is k-ideal of S and x2 ∈ I. If (x+ y)y = xy + y2 ∈ I,

then xy ∈ I because I is k-ideal of S and y2 ∈ I. Hence, each case

implies xy ∈ I and thus P 2 ⊆ I.

Now, suppose that Rad(I) = P1 ∩ P2 where P1, P2 are the

only distinct prime k-ideals of S that are minimal over I. To prove

Rad(I)2 ⊆ I we follow the same argument above. Let x, y ∈ Rad(I).

Then by theorem (3.1), we have x2, y2 ∈ I. Now, x2y + xy2 =

x(x + y)y ∈ I. Since I is 2-absorbing ideal of S, then we have ei-

ther xy ∈ I or (x + y)y ∈ I or x(x + y) ∈ I. If xy ∈ I, then we are

done. If x(x + y) = x2 + xy ∈ I, then xy ∈ I because I is k-ideal of

S and x2 ∈ I. If (x + y)y = xy + y2 ∈ I, then xy ∈ I because I is

k-ideal of S and y2 ∈ I. Hence, each case implies xy ∈ I and thus

Rad(I)2 ⊆ I. Now, we show P1P2 ⊆ I. Let x1 ∈ P1 and x2 ∈ P2. Then

we have three cases for x1 and x2:

- Case 1: If x1 ∈ P1 \P2 and x2 ∈ P2 \P1, then x1x2 ∈ I (by the proof

of theorem (3.2)).
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- Case 2: If x1 ∈ P1 ∩ P2 = Rad(I) and x2 ∈ P2 \ P1. Since P1

and P2 are distinct and minmal over I, then we can pick y1 ∈
P1 \ P2. By the proof of theorem (3.2), we have y1x2 ∈ I. Since

y1, x1 ∈ P1, then y1 + x1 ∈ P1. Moreover, y1 + x1 /∈ P2 Since if

y1 + x1 ∈ P2, then y1 ∈ P2 because P2 is k-ideal and x1 ∈ P2,

a contradiction. Now, by the proof of theorem (3.2), we have

(x1 + y1)x2 = x1x2 + y1x2 ∈ I. Since I is k-ideal and y1x2 ∈ I,

then we conclude x1x2 ∈ I.

- Case 3: If x2 ∈ P1 ∩ P2 = Rad(I) and x1 ∈ P1 \ P2, then by similar

argument for case (2) we get x1x2 ∈ I.

Hence, in three cases above we have x1x2 ∈ I and thus P1P2 ∈
I.

Theorem 3.4. Suppose that I is a 2-absorbing k-ideal of a semiring

S and Rad(I) = P is prime k-ideal such that I 6= Rad(I). For each

a ∈ Rad(I) \ I, let Ba = {s ∈ S | sa ∈ I}. Then Ba is a prime ideal of

S so that P ⊆ Ba. Moreover, for all x, y ∈ Rad(I) \ I either Bx ⊆ By

or By ⊆ Bx .

Proof. Firstly, we show that P ⊆ Bx for all x ∈ P \ I. Let x ∈ P \ I
and y ∈ P . If y ∈ I, then yx ∈ I implies that y ∈ Bx. If y ∈ P \ I,

then by theorem (3.3) P 2 ⊆ I which implies yx ∈ I and y ∈ Bx.

Secondly, we show that Bx is a prime ideal of S. Let yz ∈ Bx

for some y, z ∈ S. If yz ∈ P , then either y ∈ P ⊆ Bx or z ∈ P ⊆ Bx

because P is prime ideal. If yz ∈ Bx \ P , then yzx ∈ I. Since I ⊆ P

and yz /∈ P , we have yz /∈ I. Since I is 2-absorbing ideal and yz /∈ I,

we have either yx ∈ I or zx ∈ I that means either y ∈ Bx or z ∈ Bx.

Now, let x, y ∈ P \I and suppose that z ∈ Bx\By. Since P ⊆ By,

then z ∈ Bx \ P . We show By ⊂ Bx. Let w ∈ By. Then we have two

cases for w:
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- Case 1: If w ∈ P , then w ∈ Bx because P ⊆ Bx.

- Case 2: If w ∈ By \P , then wy ∈ I. Since w ∈ By and z ∈ Bx and I

is an ideal, then we have z(x+ y)w ∈ I. Since I is a 2-absorbing

ideal, then we conclude that either z(x + y) ∈ I or zw ∈ I or

(x + y)w ∈ I. If z(x + y) ∈ I, then zy ∈ I because zx ∈ I and

I is k-ideal, a contradiction since z /∈ By. So, z(x + y) /∈ I. If

wz ∈ I ⊆ P , then either w ∈ P or z ∈ P because P is a prime

ideal, but neither w ∈ P nor z ∈ P so we have a contradiction

and then wz /∈ I. Therefore, (x + y)w ∈ I. Since I is a k-ideal

and yw ∈ I, then xw ∈ I. Since S is a commutative semiring,

then xw = wx ∈ I and thus w ∈ Bx. Therefore, By ⊆ Bx.

Theorem 3.5. Suppose that I is a 2-absorbing k-ideal of a semiring

S and Rad(I) = P1 ∩ P2 where P1, P2 are the only prime k-ideals of S

that are minimal over I such that P1 6= P2. Let I 6= Rad(I). Then for

each a ∈ Rad(I) \ I, Ba = {s ∈ S | sa ∈ I} is a prime ideal of S such

that P1 ∪ P2 ⊆ Ba. Moreover, for all x, y ∈ Rad(I) \ I either Bx ⊆ By

or By ⊆ Bx

Proof. Firstly, we show that P1, P2 ⊂ Bx for every x ∈ Rad(I) \ I.

Let x ∈ Rad(I) \ I and y ∈ P1. If y ∈ I, then yx ∈ I implies that

y ∈ Bx. If y ∈ P1 \ I, then by theorem (3.3) we have P1P2 ⊆ I. Since

x ∈ Rad(I) and y ∈ P1, then yx ∈ I implies that y ∈ Bx. Therefore,

P1 ⊂ Bx. A similar way we prove P2 ⊂ Bx for all x ∈ Rad(I) \ I.

Secondly, we show that Bx is a prime ideal of S. Let yz ∈ Bx

for some y, z ∈ S. If yz ∈ P1, then either y ∈ P1 ⊂ Bx or z ∈ P1 ⊂ Bx

because P1 is prime ideal. If yz ∈ P2, then either y ∈ P2 ⊂ Bx or

z ∈ P2 ⊂ Bx because P2 is prime ideal. Now, assume yz ∈ Bx\(P1∪P2).

Then yzx ∈ I. Since I ⊂ P1 ∩P2 and yz /∈ P1 ∪P2, then yz /∈ I. Since
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I is a 2-absorbing ideal of S and yz /∈ I, then either yx ∈ I or zx ∈ I,

and thus either y ∈ Bx or z ∈ Bx. Hence, Bx is a prime ideal of S.

Now, let x, y ∈ Rad(I) \ I and z ∈ Bx \ By. Since P1, P2 ⊂ By,

then z ∈ Bx \ (P1 ∪ P2). We show that By ⊂ Bx. Let w ∈ By. Then

we have three cases for w:

- Case1: If w ∈ P1, then w ∈ Bx because P1 ⊂ Bx.

- Case2: If w ∈ P2, then w ∈ Bx because P2 ⊂ Bx.

- Case3: If w ∈ By \ (P1 ∪ P2), then yw ∈ I. Since w ∈ By, z ∈
Bx and I is an ideal, then we conclude (x + y)zw ∈ I. Since

I is a 2-absorbing ideal, then we have either (x + y)z ∈ I or

(x + y)w ∈ I or zw ∈ I. We claim that (x + y)w ∈ I since if

zw ∈ I ⊂ P1 ∩ P2, then zw ∈ P1 and zw ∈ P2. Since P1 and

P2 are prime ideals of S, then we have either z ∈ P1 or w ∈ P1

and either z ∈ P2 or w ∈ P2, a contradiction because neither z

nor w belong to P1 ∪ P2. If (x + y)z ∈ I, then yz ∈ I since I

is k-ideal and z ∈ Bx, a contradiction because z /∈ By. So, we

have (x + y)w = xw + yw ∈ I. Since I is a k-ideal and yw ∈ I,

then we get xw ∈ I. Since S is a commutative semiring, then

xw = wx ∈ I implies that w ∈ Bx. Therefore, By ⊂ Bx.

Corollary 3.1. Assume that I is a 2-absorbing k-ideal of a semiring

S and G =
⋃
x∈Rad(I)\I Bx such that I 6= Rad(I). Then I is a G-primal

ideal of S.

Proof. Suppose that I is a 2-absorbing ideal of S such that I 6= Rad(I)

and G =
⋃
x∈Rad(I)\I Bx. First, we want to show G is a prime ideal of S

containing I. To prove G is an ideal let a, b ∈ G. Since I 6= Rad(I),



3.3 More Characteristics of 2-Absorbing Ideals 30

then there exist x, y ∈ Rad(I) \ I such that a ∈ Bx and b ∈ By. Since

either By ⊆ Bx or Bx ⊆ By by theorems (3.4+3.5), then we have either

a, b ∈ Bx or a, b ∈ By. Since Bx and By are ideals of S by theorems

(3.4 + 3.5), then we have either a+ b ∈ Bx ⊆ G or a+ b ∈ By ⊆ G an

hence a + b ∈ G. Now, let s ∈ S and g ∈ G. Since I 6= Rad(I), then

there exists x ∈ Rad(I)\ I such that g ∈ Bx. Since Bx is an ideal of S,

then sg ∈ Bx ⊆ G and thus G is an ideal of S. To prove G is a prime

ideal, let ab ∈ G for some a, b ∈ S. Since I 6= Rad(I), then there exists

x ∈ Rad(I) \ I such that ab ∈ Bx. Since Bx is prime ideal by theorems

(3.4 + 3.5), then we have either a ∈ Bx or b ∈ Bx. Since Bx ⊆ G, then

we have either a ∈ G or b ∈ G. To prove I is contained in G.

Since for every x ∈ Rad(I) \ I, Rad(I) ⊆ Bx by theorems (3.4 + 3.5)

and I ⊆ Rad(I) by proposition (3.1), then I ⊆ Bx ⊆ G.

Now, we show Z(S/I) = G/I where G =
⋃
x∈Rad(I)\I Bx.

(⇐) Let a+I ∈ G/I. Then there exists x ∈ Rad(I)\ I such that

a ∈ Bx which implies ax ∈ I. So, ax+ I = (a+ I)(x+ I) = I and thus

a+ I is a zero divisor of S/I. Hence, we have a+ I ∈ Z(S/I).

(⇒) Let 0 6= a+ I ∈ Z(S/I). Then there exists 0 6= b+ I ∈ S/I
such that (a+ I)(b+ I) = ab+ I = I. So, we have a, b /∈ I and ab ∈ I.

We show a, b ∈ G that means a, b ∈ Bf for some f ∈ Rad(I) \ I. By

theorem (3.3), we conclude that either Rad(I) = P is a prime k-ideal

of S or Rad(I) = P1 ∩ P2 where P1, P2 are the only distinct prime

k-ideals of S that are minimal over I.

- Case 1: Suppose Rad(I) = P is a prime k-ideal of S. Since ab ∈
I ⊆ P and P is prime ideal, then we have either a ∈ P or b ∈ P .

Since a, b /∈ I, then we conclude either a ∈ P \ I or b ∈ P \ I. If

a ∈ P \ I, then a ∈ Ba because a2 ∈ I (by theorem 3.1). Since

ab ∈ I, then b ∈ Ba. If b ∈ P \ I, then b2 ∈ I by theorem
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(3.1), which implies that b ∈ Bb. Also since ab ∈ I, then a ∈ Bb.

Therefore, in either two cases we have a, b ∈ G and thus in this

case Z(S/I) ⊆ G/I.

- Case 2: Suppose that Rad(I) = P1 ∩ P2 where P1, P2 are the only

distinct prime k-ideals of S that are minimal over I. Since ab ∈
I ⊆ Rad(I) = P1 ∩ P2, P1 and P2 are prime ideals, and a, b /∈ I,

then we have either a ∈ P1\I or b ∈ P1\I and either a ∈ P2\I or

b ∈ P2 \I. So, we conclude either a ∈ Rad(I)\I or b ∈ Rad(I)\I
or b ∈ P2 \ P1 and a ∈ P1 \ P2 or b ∈ P1 \ P2 and a ∈ P2 \ P1.

Suppose a ∈ Rad(I) \ I. Then a ∈ Ba since a2 ∈ I by theorem

(3.1). Since ab ∈ I, b ∈ Ba and so a, b ∈ G. Using similar

argument we follow for the case if b ∈ Rad(I) \ I. Now, suppose

a ∈ P1 \ P2 and b ∈ P2 \ P1. Since I 6= Rad(I), then there exists

d ∈ Rad(I) \ I. Since P1 ⊂ Bd and P2 ⊂ Bd by theorem (3.5), we

have a ∈ Bd and b ∈ Bd and so a, b ∈ G. Using similar argument

we proceed for the case if a ∈ P2 \ P1 and b ∈ P1 \ P2. Therefore,

in all cases we have a, b ∈ G and thus Z(S/I) ⊆ G/I.

Theorem 3.6. Assume that I is a k-ideal of a semiring S and suppose

Rad(I) = P is a prime k-ideal of S such that I 6= Rad(I). Then the

following statements are equivalent:

(1) Ba = {s ∈ S | sa ∈ I} is a prime ideal of S for each a ∈ Rad(I)\I.

(2) I is a 2-absorbing ideal of S.

Proof. (2)⇒ (1) It follows from theorem (3.4).

(1)⇒ (2) Let xyz ∈ I for some x, y and z ∈ S. Since I ⊂ Rad(I)

and Rad(I) = P is a prime k-ideal of S, we have either x ∈ Rad(I) or
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yz ∈ Rad(I). Suppose x ∈ Rad(I). If x ∈ I, then yx ∈ I and we are

done. If x ∈ Rad(I) \ I, then yz ∈ Bx. Since Bx is a prime ideal, then

we have either y ∈ Bx or z ∈ Bx and thus either yx ∈ I or zx ∈ I.

Now, assume yz ∈ Rad(I). Since Rad(I) is prime ideal of S, then we

have either y ∈ Rad(I) or z ∈ Rad(I). So, in either case we proceed

as in the case x ∈ Rad(I). Hence, I a is 2-absorbing ideal of S.

Theorem 3.7. Suppose that I is a k-ideal of a semiring S and assume

Rad(I) = P1 ∩ P2 where P1, P2 are the only distinct prime k-ideals of

S that are minimal over I such that I 6= Rad(I). Then the following

statements are equivalent:

(1) I is a 2-absorbing ideal of S.

(2) For each a ∈ (P1 ∩ P2) \ I, Ba = {s ∈ S | sa ∈ I} is a prime ideal

of S and P1P2 ⊆ I.

(3) For each a ∈ (P1 ∪ P2) \ I, Ba = {s ∈ S | sa ∈ I} is a prime ideal

of S.

Proof. (1)⇒ (2) It follows from theorems (3.3 + 3.5).

(2)⇒ (3) Let x ∈ (P1 ∪ P2) \ I. Then we have three cases for x:

- Case 1: If x ∈ (P1 ∩ P2) \ I, then we are done by (2).

- Case 2: If x ∈ P1 \ (P2 ∪ I), We claim that y ∈ P2 if and only if

yx ∈ I where y ∈ S. To show that if y ∈ P2, then yx ∈ I because

P1P2 ⊆ I and x ∈ P1. Now if yx ∈ I ⊆ P1 ∩ P2, then yx ∈ P2.

Since P2 is a prime ideal of S and x /∈ P2, then we have y ∈ P2.

By the previous claim, we conclude Bx = {y ∈ S | yx ∈ I} = P2

and thus it’s a prime ideal of S.

- Case 3: If x ∈ P2 \ (P1 ∪ I), then using the same argument in case

(2) we conclude that Bx = P1 and thus it’s a prime ideal of S.
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(3)⇒ (1) Let xyz ∈ I for some x, y and z ∈ S. Since I ⊆ P1∩P2

and P1, P2 are prime ideals of S, then we have either x ∈ P1 or y ∈ P1

or z ∈ P1 and either x ∈ P2 or y ∈ P2 or z ∈ P2. So we have three

cases either x ∈ P1 ∪ P2 or y ∈ P1 ∪ P2 or z ∈ P1 ∪ P2. Without loss

of generality, assume x ∈ P1∪P2. Now, if x ∈ I, then yx ∈ I and we

are done. Otherwise if x ∈ (P1 ∪ P2) \ I, then either y ∈ Bx or z ∈ Bx

since yz ∈ Bx and Bx is a prime ideal of S by (3). Thus, either yx ∈ I
or zx ∈ I and so I is 2-absorbing ideal of S.

Theorem 3.8. Suppose that I is a 2-absorbing k-ideal of a semiring S

and I 6= Rad(I). For each a ∈ Rad(I) \ I, let Ba = {s ∈ S | sa ∈ I}.
Then:

(1) If x ∈ Rad(I) \ I and y /∈ Bx, then Byx = Bx.

(2) If x, y ∈ Rad(I) \ I and Bx is properly contained in By, then

Bdx+qy = Bx for every q, d ∈ S such that qd /∈ Bx. Moreover,

if x, y ∈ Rad(I) \ I and Bx ⊂ By, then Bx+y = Bx.

Proof. (1) Let x ∈ Rad(I) \ I and y ∈ S such that yx /∈ I. Since

x ∈ Rad(I) \ I, yx /∈ I and Rad(I) is an ideal, then yx ∈ Rad(I) \ I
and so Byx is defined. Now we show Byx = Bx.

(⇐) Let z ∈ Bx. Then zx ∈ I. Since I is an ideal, S is com-

mutative semiring and y ∈ S, then we conclude zyx ∈ I and thus

z ∈ Byx.

(⇒) Let c ∈ Byx. Then cyx ∈ I and thus yc ∈ Bx. Since Bx

is prime ideal by theorems (3.4 + 3.5), then either y ∈ Bx or c ∈ Bx.

If y ∈ Bx, then yx ∈ I, a contradiction. Hence, c ∈ Bx and thus

Byx = Bx.

(2) Let x, y ∈ Rad(I) \ I and Bx is properly contained in By.

Suppose q, d ∈ S such that qd /∈ Bx. Since Bx is a prime ideal of S,
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then neither q nor d are in Bx. Since x, y ∈ Rad(I) and Rad(I) is

an ideal, then we conclude dx + qy ∈ Rad(I). Since Bx is a prime

ideal containing Rad(I) by theorems (3.4 + 3.5) and I ⊆ Rad(I), then

q, d /∈ I. Hence, dx + qy ∈ Rad(I) \ I and Bdx+qy is defined. Now we

show Bdx+qy = Bx.

(⇐) Let c ∈ Bx. Then cx ∈ I. Since Bx ⊂ By, then c ∈ By and

so cy ∈ I. Since I is an ideal, then cdx+ cqy ∈ I and thus c ∈ Bdx+qy.

Hence, Bx ⊆ Bdx+qy.

(⇒) Suppose Bx 6= Bdx+qy. Then Bx is properly contained in

Bdx+qy i.e., Bx ⊂ Bdx+qy. By theorems (3.4 + 3.5), we have two cases

either By ⊆ Bdx+qy or Bdx+qy ⊆ By. Since Bx ⊂ By and Bx ⊂ Bdx+qy,

then in both cases above we can find z ∈ By ∩Bdx+qy such that z /∈ Bx

that is zy ∈ I and z(dx+qy) ∈ I. Since I is a k-ideal and zqy ∈ I, then

zdx ∈ I and thus zd ∈ Bx. Since Bx is a prime ideal of S, then either

z ∈ Bx or d ∈ Bx, a contradiction since neither z ∈ Bx nor d ∈ Bx.

Therefore, Bx = Bdx+qy.

Now, we show the last part of the theorem. Let x, y ∈ Rad(I)\I.

Since S is a semiring with unity 1, then we can take q = d = 1 and so

qd = 1 /∈ Bx since if 1 ∈ Bx then x ∈ I, a contradiction. So, by second

part of the theorem we have Bx+y = Bx.

Theorem 3.9. Let I be a nonzero k-ideal of a semiring S. Then the

following statements are equivalent:

1 I is a 2-absorbing ideal of S.

2 if I1I2I3 ⊆ I, then either I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I where

I1, I2 and I3 are ideals of S.

Proof. (2) ⇒ (1) Let abc ∈ I for some a, b, c ∈ S. Then we

claim that 〈abc〉 = 〈a〉 〈b〉 〈c〉. To show that assume that H = 〈a〉,
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K = 〈b〉 and L = 〈c〉 and let x ∈ 〈abc〉. Then x = (abc)s =

a(1) b(1) c(s) ∈ 〈a〉 〈b〉 〈c〉 for some s ∈ S. Hence, 〈abc〉 ⊆ 〈a〉 〈b〉 〈c〉.
Now, let x ∈ 〈a〉 〈b〉 〈c〉. Then there exist s1, s2 and s3 in S such

that x = (as1)(bs2)(cs3). Since S is commutaive semiring, then

x = abc(s1s2s3) which implies x ∈ 〈abc〉. Therefore 〈abc〉 = 〈a〉 〈b〉 〈c〉.
Since abc ∈ I and 〈abc〉 = HKL, then we have HKL ⊆ I. By as-

sumption we have either HK = 〈a〉 〈b〉 ⊆ I or KL = 〈b〉 〈c〉 ⊆ I or

HL = 〈a〉 〈c〉 ⊆ I and thus either ab ∈ I or bc ∈ I or ac ∈ I. Therefore,

I is 2-absorbing ideal of S.

(1)⇒ (2) Suppose I is a 2-absorbing ideal of S and suppose that

I1I2I3 ⊆ I for some ideals I1, I2 and I3 of S. By theorem (3.3), we

conclude that either Rad(I) = P is a prime k-ideal of S or Rad(I) =

P1 ∩ P2 where P1, P2 are the only distinct prime k-ideals of S that are

minimal over I. Assume I = Rad(I), then either I = P is a prime

k-ideal of S or I = P1 ∩ P2, where P1, P2 are the only distinct prime

k-ideals of S that are minimal over I. If I = P is a prime ideal, then by

corollary (2.2) we have either I1 ⊆ I or I2 ⊆ I or I3 ⊆ I. Without loss

of generality, assume I1 ⊆ I then I1I2 ⊆ I1 ⊆ I and I1I3 ⊆ I1 ⊆ I.

Now if I = P1 ∩ P2, then we have I1I2I3 ⊆ P1 and I1I2I3 ⊆ P2. Since

P1 and P2 are prime ideals of S, then we conclude either I1 ⊆ P1 or

I2 ⊆ P1 or I3 ⊆ P1 and either I1 ⊆ P2 or I2 ⊆ P2 or I3 ⊆ P2. Assume

I1 ⊆ P1. If I1 ⊆ P2, then I1 ⊆ P1 ∩ P2 = I which implies I1I2 ⊆ I and

I1I3 ⊆ I and we are done. If I1 * P2, then either I2 ⊆ P2 or I3 ⊆ P2.

Since P1P2 ⊆ I by theorem (3.5), we conclude that either I1I2 ⊆ I or

I1I3 ⊆ I. Hence, the assumption holds for I = Rad(I).

Now, suppose I 6= Rad(I). We consider two cases:

- Case 1: Suppose that Rad(I) = P is a prime ideal of S. Since

I1I2I3 ⊆ I ⊆ P and P is a prime ideal of S, then we conclude

either I1 ⊆ P or I2 ⊆ P or I3 ⊆ P . Without loss of generality,
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assume I1 ⊆ P . If I1 ⊆ I, then I1I2 ⊆ I1 ⊆ I and we are done.

Now suppose I1 ⊆ P and I1 * I and let x ∈ I1 \ I. Since

xI2I3 ⊆ I, we have xab ∈ I for every a ∈ I2 and b ∈ I3 which

implies that I2I3 ⊆ Bx. Since Bx is prime ideal of S by theorem

(3.4), we conclude that either I2 ⊆ Bx or I3 ⊆ Bx. we consider

two cases for the previous conclusion:

• If I2 ⊆ Bx and I3 ⊆ Bx for all x ∈ I1 \ I, then xI2 ⊆ I and

xI3 ⊆ I implies that zI2 ⊆ I and zI3 ⊆ I for all z ∈ I1 and

thus I1I2 ⊆ I and I1I3 ⊆ I

• If I2 ⊆ By and I3 * By for some y ∈ I1 \ I, then we claim

that I2 ⊆ Bz for each z ∈ I1 \ I. Let z ∈ I1 \ I. By theorem

(3.4), we conclude that either Bz ⊆ By or By ⊆ Bz. If

By ⊆ Bz, then I2 ⊆ Bz and we are done. Otherwise assume

Bz ⊆ By. Since I1I2I3 ⊆ I, then I2I3 ⊆ Bz. Since Bz is a

prime ideal of S, then we have either I2 ⊆ Bz or I3 ⊆ Bz.

If I3 ⊆ Bz, then we can choose y = z and thus I3 ⊆ By, a

contradiction. So, By ⊆ Bz and thus I2 ⊆ Bz and zI2 ⊆ I

for all z ∈ I1 \ I implies that I1I2 ⊆ I.

- Case 2: Suppose that Rad(I) = P1 ∩ P2 where P1, P2 are the

only distinct prime k-ideals of S that are minimal over I. Since

I1I2I3 ⊆ I ⊆ Rad(I), then I1I2I3 ⊆ P1 and I1I2I3 ⊆ P1. Since

P1 and P2 are prime ideals od S, then we have either I1 ⊆ P1 or

I2 ⊆ P1 or I3 ⊆ P1 and either I1 ⊆ P2 or I2 ⊆ P2 or I3 ⊆ P2.

Assume I1 ⊆ P1. Then we consider three cases:
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1. If I1 ⊆ P1 and either I2 ⊆ P2 or I3 ⊆ P2, then either I1I2 ⊆ I

or I1I3 ⊆ I because P1P2 ⊆ I by theorem (3.5).

2. If I1 ⊆ P1 ∩ P2 and I1 ⊆ I, then I1I2 ⊆ I and I1I3 ⊆ I.

3. If I1 ⊆ P1∩P2 and I1 * I, then we follow the same argument

in case (1) and we are done.



CHAPTER 4

On 2-Absorbing Ideals in

Special Categories of

Semirings

4.1 2-Absorbing Ideals and P-Primal k-Ideals

In this section, we recall the definition of P -primal ideals and

introduce the relationship between the 2-absorbing ideals and P -primal

ideals of a semiring S.

Definition 4.1 (P -Primal Ideal). Let S be a semiring and I an ideal

of S. Then I is said to be P -primal ideal of S if Z(S/I) = P/I for

some a prime ideal P .

Theorem 4.1. Suppose that I is a P -primal k-ideal of a semiring S

such that Rad(I) = P . Then the following are equivalent:

(1) I is a 2-absorbing ideal of S.

38
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(2) P 2 ⊆ I.

Proof. (1) ⇒ (2) Assume I is a 2-absorbing k-ideal of S such that

Rad(I) = P . Then by theorem (3.3), P 2 ⊆ I.

(2)⇒ (1) Suppose I is a P -primary ideal of S such that P 2 ⊆ I

and let x, y and z ∈ S with xyz ∈ I. Since I ⊆ Rad(I) = P , then

xyz ∈ P . Since P is prime ideal of S, then either x ∈ P or yz ∈ P . If

either x ∈ I or yz ∈ I, then we are done. Assume that neither x ∈ I
nor yz ∈ I. Since xyz ∈ I, then xyz + I = (x+ I)(yz + I) = I implies

that x + I, yz + I ∈ Z(S/I). Since I is P -primarl ideal of S, then

x ∈ P and yz ∈ P . Since P is a prime ideal of S, then we conclude

either x, y ∈ P or x, z ∈ P . Since P 2 ⊆ I, then we have either xy ∈ I
or xz ∈ I. Hence, I is a 2-absorbing ideal of S.

4.2 On 2-Absorbing Ideals of Divided Semido-

mains

In this section, we study the concepts of divided semidomains

and divided ideals in a semiring S. We also investigate the notation of

2-absorbing ideals of a divided semidomain and discuss theorems and

examples related to it.

Definition 4.2. Let S be a semiring and P a prime ideal of S. Then

P is said to be a divided prime ideal if P ⊂ 〈x〉 for every x ∈ S \ P .

Remark 4.1. If P is a divided prime ideal of a semiring S, then either

P ⊂ 〈x〉 or 〈x〉 ⊂ P for every x ∈ S. That means, P is comparable to

every principle ideal of S.
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Proof. Assume S is a semiring and P is a divided prime ideal of S. Let

x ∈ S. Then either x ∈ P or x ∈ S \ P . If x ∈ P , then 〈x〉 ⊂ P . If

x ∈ S \P , then P ⊂ 〈x〉 by the definition of a divided prime ideal.

Definition 4.3 (Divided Semdomain). A semidomain S is said to be

a divided semdomain if every prime ideal of S is a divided prime ideal.

Theorem 4.2. Suppose that P is nonzero divided prime k-ideal of a

semiring S and I is a k-ideal such that Rad(I) = P . Then the following

statements are equivalent:

(1) I is a 2-absorbing ideal of S.

(2) I is a P -primarl ideal of S such that P 2 ⊆ I.

Proof. (2)⇒ (1). It follows from theorem (4.1).

(1)⇒ (2). Suppose I is a 2-absorbing ideal of S. Since Rad(I) =

P , then by theorem (3.3) we have P 2 ⊆ I. Now, we show the equality

Z(S/I) = P/I, let x+ I ∈ P/I. If x ∈ I, then x+ I = I which implies

x + I ∈ Z(S/I). If x ∈ P \ I, then x2 ∈ I because P 2 ⊆ I. Hence,

x2 + I = (x+ I)(x+ I) = I so x+ I ∈ Z(S/I) and thus P/I ⊆ Z(S/I).

To prove the other direction of the equality, let 0 6= x + I ∈ Z(S/I).

Then there exists 0 6= y+I ∈ S/I such that (x+I)(y+I) = (xy)+I = I

implies that xy ∈ I and x, y ∈ S \ I. Since P is a prime ideal and

xy ∈ I ⊆ P , then we conclude that either x ∈ P or y ∈ P . Assume

x /∈ P and y ∈ P . Since P is a divided prime ideal of S, then P ⊂ 〈x〉
so there exists k ∈ S such that y = xk and thus we have xy = x2k ∈ I.

Since I is a 2-absorbing ideal of S and y = xk /∈ I, then we have

x2 ∈ I ⊆ P . Since P is a prime ideal, then x ∈ P , a contraction.

Hence, x, y ∈ P and Z(S/I) = P/I.
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Theorem 4.3. Suppose that S is a multiplicatively cancellative semir-

ing and P is a divided prime k-ideal of S. Then P 2 is a 2-absorbing

ideal of S if P 2 is a k-ideal of S.

Proof. Let S be a multiplicatively cancellative semiring and P be a

divided prime k-ideal of S and suppose P 2 is k-ideal of S. Then by

theorem (2.1), we have Rad(P 2) = Rad(P ). Now, to show P 2 is a

2-absorbing ideal. It suffices by theorem (4.2) to prove that P 2 is a P -

primary ideal of S, i.e., Z(S/P 2) = P/P 2. Let a + P 2 ∈ P/P 2. Then

a ∈ P implies that a2 ∈ P 2. So, (a + P 2)(a + P 2) = a2 + P 2 = P 2.

Hence, a + P 2 ∈ Z(S/P 2) and thus P/P 2 ⊂ Z(S/P 2). Now, we prove

the other direction of the equality let 0 6= x + P 2 ∈ Z(S/P ). Then

there exists 0 6= y+P 2 ∈ S/P 2 such that (x+P 2)(y+P 2) = xy+P 2 =

P 2, which implies xy ∈ P 2 and then there exist {p1, p2, ... pn} and

{q1, q2, ... qn} in P such that xy = p1q1 + p2q2 + ... + pnqn. Since

xy ∈ P 2 ⊂ P and P is a prime ideal of S, then we have either x ∈ P
or y ∈ P . Assume x /∈ P . Since P is a divided prime ideal of S, then

for all i ∈ {1, 2, ... n} we have pi = xci where the ci’s are in S and thus

xy = xc1q1 + xc2q2 + ... + xcnqn. Since P is a prime ideal of S and

x /∈ P , then ci ∈ P so all ci’s are in P . Since S is a multiplicatively

canellative semiring, then we have y = c1q1 + c2q2 + ... + cnqn ∈ P 2, a

contradiction because y /∈ P 2. So, x ∈ P and x+ P 2 ∈ P/P 2 and thus

Z(S/P 2) = P/P 2. Therefore, P 2 is a P -primarl ideal of S and so P is

a 2-absorbing ideal of S.

Theorem 4.4. Suppose that S is a semiring and nilradical of S

(Nil(S)) is a prime ideal of S. Let P be a divided prime k-ideal of

S such that Nil(S) ⊂ P 2. Then P 2 is 2-absorbing ideal of S if P 2 is a

k-ideal of S and P 2 ⊂ V (S).

Proof. Let P be a divided prime k-ideal of S. Then by theorem (2.1),
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we have Rad(P 2) = P . To prove P 2 is a 2-absorbing ideal of S it is

enough to show that P 2 is P -primary ideal i.e., Z(S/P 2) = P/P 2. The

first direction of the equality (P/P 2 ⊆ Z(S/P 2)) follows from theorem

(4.3). Now, let 0 6= x + P 2. Then there exists 0 6= y + P 2 ∈ S/P 2

such that (x + P 2)(y + P 2) = xy + P 2 = P 2 which implies xy ∈ P 2

and then xy = p1q1 + p2q2 + · · ·+ pnqn where the pi’s and qi’s are in P .

Since xy ∈ P 2 ⊂ P and P is a prime ideal of S, then we have either

x ∈ P or y ∈ P . Assume x /∈ P . Since P is a divided prime ideal of

S, then for all i ∈ {1, 2, · · ·n} we have pi = xci where the ci’s are in

S and thus xy = xc1q1 + xc2q2 + · · · + xcnqn. Since P is a prime ideal

of S and x /∈ P , then ci ∈ P so all ci’s are in P . Since P 2 ⊂ V (S),

then we conclude that xy− xc1q1 − xc2q2 − · · · − xcnqn = x(y− c1q1 −
c2q2 − · · · − cnqn) = 0 ∈ Nil(S). Since x /∈ P and Nil(S) ⊂ P , then

x /∈ Nil(S) and so (y − c1q1 − c2q2 − ... − cnqn) = z ∈ Nil(S) because

Nil(S) is a prime ideal of S. Since Nil(S) ⊂ P 2, then we have that

y = c1q1 + c2q2 + ... + cnqn + z ∈ P 2, a contradiction. So, x ∈ P and

Z(S/P 2) = P/P 2. Therefore, P 2 is 2-absorbing ideal of S.

Corollary 4.1. Suppose S is a semidomain and P is a nonzero divided

prime k-ideal. Then P 2 is 2-absorbing ideal of S if P 2 is k-ideal and

P 2 ⊂ V (S).

Proof. Let S be a semidomain. Then Nil(S) = 0 is a prime ideal and

hence Nil(S) ⊂ P 2. So, P 2 is a 2-absorbing ideal of S by theorem (4.4)

.

We consider an example of a semidomain S and a prime k-ideal

P of S such that P 2 is not a 2-absorbing ideal of S.

Example 4.1. Suppose that S = N+4xN[x] where N is the semiring of

integers and x is an indeterminate. Then S is a commutative semiring

by example (2.5). To show S has no nonzero zero divisor, let a, b ∈ S
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with ab = 0. Then there exist c1, c2 ∈ N and f1(x), f2(x) ∈ N[x]

such that a = c1 + 4xf1(x) and b = c2 + 4xf2(x) and then ab =

c1c2 + 4x[c1f2(x) + c2f1(x) + 4xf1(x)f2(x)] = 0. So, ab = 0 if either c1

and f1(x) are equal to 0 or c2 and f2(x) are equal to 0. Hence, either

a = 0 or b = 0 and thus S is a semidomain.

Assume P = 4xN[x]. To show P is a prime ideal of S, Let

y, z ∈ S with yz ∈ P and y /∈ P . Then there exist c1, c2 ∈ N and

f1(x), f2(x) ∈ N[x] such that y = c1+4xf1(x) and z = c2+4xf2(x) and

then yz = c1c2 + 4x[c1f2(x) + c2f1(x) + 4xf1(x)f2(x)]. Since yz ∈ P ,

then c1c2 = 0 if c1 = 0 then y ∈ P , a contradiction. Therefore, c2 = 0

and then z ∈ P . To prove P is k-ideal, let a, b ∈ S with a + b ∈ P

and a ∈ P . Then there exists c ∈ N and f1(x), f2(x), f3(x) ∈ N[x]

such that a = 4xf1(x) and b = c + 4xf2(x) and ab = 4xf3(x). So,

a + b = c + 4x[f1(x) + f2(x)] = 4xf3(x) and hence c must be equal to

0.

To show P 2 is not a 2-absorbing ideal we will use theorem (3.6)

i.e., for some z ∈ P \ P 2 we have Bz is not a prime ideal. Consider

z = 4x2 then z /∈ P 2 and so z ∈ P \ P 2. Moreover, Bz = B4x2 =

{y ∈ S | y(4x2) ∈ P 2} = 4N + 4xN[x] is not a prime ideal of S. Since

(2 + 4x)(2 + 4x) = 4 + 4x[4 + 4x] ∈ B4x2 and 2 + 4x /∈ B4x2 . Hence, P 2

is not 2-absorbing ideal of S.

4.3 On 2-Absorbing Ideals of Valuation Semirings

In this section, we give the definition of valuation semiring. We

also introduce the conection between a divided semidomain and valu-

ation semiring and we study relevance between 2-absorbing ideals and

P -primarl ideals of valuation semiring.



4.3 On 2-Absorbing Ideals of Valuation Semirings 44

First let us consider the connotation of valuation maps of semir-

ings with values in tomonoid.

Definition 4.4. [15] An M-valuation f on a semiring S is a map f :

S −→M∞ such that the following conditions hold:

(1) (M∞,+, 0,≤) is tomonoid with the largest element +∞, which has

gained from the tomonoid (M,+, 0,≤) with no largest element.

(2) f(ab) = f(a) + f(b) for all a, b ∈ S.

(3) f(a+ b) ≥ min{f(a), f(b)} for all a, b ∈ S.

(4) f(1) = 0 and f(0) = +∞.

Now let us give an example of an M -valuation map f on a semir-

ing S.

Example 4.2. Suppose that S is a semiring with no nonzero zero

divisors (Z(S) = {0}). Then

f(s) =

0, s ∈ S \ {0}

+∞, s = 0

is an M -valuation f on S where M = {0}. To show this we check the

four previous conditions of definition (4.4).

- M∞ is tomonoid with greatest element +∞.

- Let a, b ∈ S. If either a or b equal to 0, then ab = 0 and hence

+∞ = f(ab) = f(a) + f(b). Now, assume neither a nor b equal

to 0. Since S has no nonzero zero divisors, then ab 6= 0 and so

0 = f(ab) = f(a) + f(b). Hence, f(ab) = f(a) + f(b) for all

a, b ∈ S.
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- Let a, b ∈ S. If a and b equal to 0, then f(a + b) = +∞ =

min{f(a), f(b)}. If a = 0 and b 6= 0, then a + b = b and

f(a + b) = 0 = min{f(a), f(b)}. Now, assume neither a nor b

equal to 0 if a+b = 0 then f(a+b) = +∞ ≥ min{f(a), f(b)} = 0.

If a + b 6= 0, then f(a + b) = 0 = min{f(a), f(b)}. So, in either

any cases we have f(a+ b) ≥ min{f(a), f(b)}.

- f(0) = +∞ and f(1) = 0 from the assumption.

Definition 4.5. Let S be a semiring and Sf = {s ∈ S, f(s) ≥ 0}.
Then Sf is said to be a F -semiring with respect to the triple

(S, f,M) if there exists an M -valuaion f on S.

Definition 4.6 (Valuation Semiring). Let S be a semiring. Then S is

said to be a valuation semiring if there exists an M -valuation f on K,

where K is a semifield and f is a surjective map and S = Kf = {s ∈
K, f(s) ≥ 0}.

Theorem 4.5. Let S be a multiplicatively cancellative semiring. Then

S is a divided semidomain if it’s a valuation semiring.

Proof. Let P be a prime ideal of a multiplicatively cancellative valua-

tion semiring S and x ∈ S \P and y ∈ P . Then by [15] we have either

〈x〉 ⊆ 〈y〉 or 〈y〉 ⊆ 〈x〉. If 〈y〉 ⊆ 〈x〉, then P ⊆ 〈x〉 and we are done. If

〈x〉 ⊆ 〈y〉, then there exists s ∈ S such that x = ys. Since y ∈ P , then

x = ys ∈ P , a contradiction. Hence, P ⊂ 〈x〉 for all x ∈ S \ P and

thus S is a divided semidomain.

Theorem 4.6. Suppose that S is a multiplicatively cancellative val-

uation semiring and I is a nonzero proper k-ideal of S such that

Rad(I) = P . Then I is a 2-absorbing ideal of S if and only if I is

P -primarl ideal of S such that P 2 ⊆ I.
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Proof. (⇒) Assume I is a 2-absorbing ideal of S. Then Rad(I) = P is a

prime k-ideal of S. Since S is a multiplicatively cancellative valuation,

then by theorem (4.5) S is a divided domain and so P is a divided

prime ideal of S. By theorem (4.2), I is P -primarl ideal of S such that

P 2 ⊆ I.

(⇐) Assume I is a P -primal ideal of S such that P 2 ⊆ I. Since

S is a divided semidomain, then by theorem (4.2) I is 2-absorbing ideal

of S.

Theorem 4.7. Suppose that S is a multiplicatively cancellative valua-

tion semiring and I is a nonzero proper k-ideal of S. Let Rad(I) = P

and P 2 is a k-ideal of S. Then I is a 2-absorbing of S if I = P or

I = P 2.

Proof. Suppose that either I = P or I = P 2 where P = Rad(I). Then

P is a prime k-ideal of S. If I = P , then I is a 2-absorbing ideal

of S. Now assume I = P 2. Since S is a multiplicatively cancellative

valuation semiring, then by theorem (4.5) S is a divided semidomain

and so P is a divided prime ideal of S. By theorem (4.3), we have P 2

is a 2-absorbing ideal of S.

The following is an example of a semidomain S and a prime k-

ideal P of S such that P 2 is not a P -primarl ideal of S, but P 2 is a

2-absorbing ideal of S.

Example 4.3. Assume that S = Z+3xZ[x] where Z is the semiring of

integer numbers and x is an indeterminate. Then S is a commutative

semiring by example (2.5). To show that S has no nonzero zero divisor,

let a, b ∈ S with ab = 0. Then there exist c1, c2 ∈ N and f1(x), f2(x) ∈
N[x] such that a = c1 + 3xf1(x) and b = c2 + 3xf2(x) and then ab =

c1c2 + 3x[c1f1(x) + c2f1(x) + 3xf1(x)f2(x)] = 0. So, ab = 0 if either c1
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and f1(x) are equal to 0 or c2 and f2(x) are equal to 0. Hence, either

a = 0 or b = 0 and thus S is a semidomain.

Suppose P = 3xZ[x]. To show P is a prime k-ideal of S, let

y, z ∈ S with yz ∈ P and y /∈ P . Then there exist c1, c2 ∈ N and

f1(x), f2(x) ∈ N[x] such that y = c1 + 3xf1(x) and z = c2 + 3xf2(x)

and then yz = c1c2+3x[c1f1(x)+c2f1(x)+3xf1(x)f2(x)]. Since yz ∈ P ,

then c1c2 = 0 if c1 = 0 then y ∈ P , a contradiction. Therefore, c2 = 0

and then z ∈ P . To prove P is k-ideal, let a, b ∈ S with a + b ∈ P
and a ∈ P . Then there exists c ∈ N and f1(x), f2(x), f3(x) ∈ N[x]

such that a = 3xf1(x) and b = c + 3xf2(x) and ab = 3xf3(x). So,

a + b = c + 3x[f1(x) + f2(x)] = 3xf3(x) and hence c must be equal to

0.

P 2 is not P -primarl ideal of S since if we take a = 3 + 3x and

b = 3x2, then a and b /∈ P 2. Consider ab = (3 + 3x)3x2 = (3x)(3x) +

(3x)(3x2). Then ab ∈ P 2 and thus a and b ∈ Z(S/P 2), but a /∈ P .

Therefore, ZS/P
2 6= P/P2.

To show P 2 is a 2-absorbing ideal of S we will use theorem (3.6),

let f ∈ P \ P 2. Then we have either Bf = {y ∈ S | yf ∈ P 2} = P or

Bf = 3Z + 3xZ[x] and in either two cases Bf is a prime ideal.
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Conclusion

In this thesis we recalled some of algebraic structures in semiring the-

ory and gave some examples related to it. We studied the concept

of 2-absorbing ideal in commutative semiring and illustrated it with

many examples and introduced advanced theorems, also we studied

this concept in particular classes of a semiring.

Future Work

In future we hope to study the concept of 2-absorbing ideal in prufer

semidomain and Dedekind semidomain. Also we wish to study another

generalization of prime ideals in commutative semirings, for example

n-absorbing ideals and primary ideals.
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